MLVCNN: Multi-Loop-View Convolutional Neural Network for 3D Shape Retrieval
نویسندگان
چکیده
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملSparse 3D Convolutional Neural Networks for Large-Scale Shape Retrieval
In this paper we present preliminary results of performance evaluation of S3DCNN — a Sparse 3D Convolutional Neural Network — on a large-scale 3D Shape benchmark ModelNet40, and measure how it is impacted by voxel resolution of input shape. We demonstrate comparable classification and retrieval performance to state-of-the-art models, but with much less computational costs in training and infere...
متن کامل3D multi-view convolutional neural networks for lung nodule classification
The 3D convolutional neural network (CNN) is able to make full use of the spatial 3D context information of lung nodules, and the multi-view strategy has been shown to be useful for improving the performance of 2D CNN in classifying lung nodules. In this paper, we explore the classification of lung nodules using the 3D multi-view convolutional neural networks (MV-CNN) with both chain architectu...
متن کاملGroup-Pair Convolutional Neural Networks for Multi-View based 3D Object Retrieval
In recent years, research interest in object retrieval has shifted from 2D towards 3D data. Despite many well-designed approaches, we point out that limitations still exist and there is tremendous room for improvement, including the heavy reliance on hand-crafted features, the separated optimization of feature extraction and object retrieval, and the lack of sufficient training samples. In this...
متن کاملLarge-Scale Shape Retrieval with Sparse 3D Convolutional Neural Networks
In this paper we present preliminary results of performance evaluation of S3DCNN — a Sparse 3D Convolutional Neural Network — on a large-scale 3D Shape benchmark ModelNet40, and measure how it is impacted by voxel resolution of input shape. We demonstrate comparable classification and retrieval performance to state-of-the-art models, but with much less computational costs in training and infere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33018513